What Is Diagnostic Analytics? 4 Examples | HBS Online (2023)

Data analytics—often called business analytics by organizations—is the process of using data to answer questions, identify trends, and extract insights. These insights can be valuable to organizations because they help drive decision-making and strategy formulation.

There are four key types of data analytics:

  • Descriptive, which answers the question, “What happened?”
  • Diagnostic, which answers the question, “Why did this happen?”
  • Predictive, which answers the question, “What might happen in the future?”
  • Prescriptive, which answers the question, “What should we do next?”

Each analytics type serves a specific purpose and can be used in tandem with the others to gain a full picture of the story data tells.

Diagnostic analytics provides crucial information about why a trend or relationship occurred and is useful for professionals aiming to support their decisions with data. Here’s an introduction to diagnostic analytics and key considerations for using it at your organization.

Free E-Book: A Beginner's Guide to Data & Analytics

Access your free e-book today.


What Is Diagnostic Analytics?

Diagnostic analytics is the process of using data to determine the causes of trends and correlations between variables. It can be viewed as a logical next step after using descriptive analytics to identify trends. Diagnostic analysis can be done manually, using an algorithm, or with statistical software (such as Microsoft Excel).

There several concepts to understand before diving into diagnostic analytics: hypothesis testing, the difference between correlation and causation, and diagnostic regression analysis.

(Video) What is Diagnostic Analytics | Data Analytics | Techcanvass

Hypothesis Testing

Hypothesis testing is the statistical process of proving or disproving an assumption. Having a hypothesis to test can guide and focus your diagnostic analysis.

Hypotheses can be future-oriented (for example, “If we change our company’s logo, more people in North America will buy our product.”), but these aid predictive or prescriptive analytics. When conducting diagnostic analytics, hypotheses are historically-oriented (for example, “I predict this month’s decline in sales was caused by our product’s recent price increase.”). The hypothesis directs your analysis and serves as a reminder of what you’re aiming to prove or disprove.

Correlation vs. Causation

When exploring relationships between variables, it’s important to be aware of the distinction between correlation and causation. If two or more variables are correlated, their directional movements are related. If two variables are positively correlated, it means that as one goes up or down, so does the other. Alternatively, if two variables are negatively correlated, one variable goes up while the other goes down.

The key in diagnostic analytics is remembering that just because two variables are correlated, it doesn’t necessarily mean one caused the other to occur.

If your organization is able to dedicate resources to running controlled experiments, you may be able to determine causation between variables. While determining causation is ideal, correlation can still offer the insight needed to make sense of your data and use it to make impactful decisions.

Diagnostic Regression Analysis

Some relationships between variables are easily discerned, but others require more in-depth analysis, such as regression analysis, which can be used to determine the relationship between two variables (single linear regression) or three or more variables (multiple regression). The relationship is expressed by a mathematical equation that translates to the slope of a line that best fits the variables’ relationship.

“Regression allows us to gain insights into the structure of that relationship and provides measures of how well the data fit that relationship,” says Harvard Business School Professor Jan Hammond, who teaches the online course Business Analytics, one of the three courses that make up the Credential of Readiness (CORe) program. “Such insights can prove extremely valuable for analyzing historical trends and developing forecasts.”

(Video) Diagnostic Assessment: Examples & Overview

When regression analysis is used to explain the relationships between variables in a historical context, that’s an example of diagnostic analytics. The regression can then be used to develop forecasts for the future, which is an example of predictive analytics.

Diagnostic analytics can be leveraged to understand why something happened and the relationships between related factors. With the basics under your belt, consider these four examples of diagnostic analytics in action and how they can apply to your company.

What Is Diagnostic Analytics? 4 Examples | HBS Online (1)

4 Examples of Diagnostic Analytics in Action

1. Examining Market Demand

One use case of diagnostic analytics is determining the reasons behind product demand.

For example, take meal kit subscription company HelloFresh. The company gathers millions of data points from global users, including information about geographic location, disclosed demographic data, meal type, flavor preferences, and typical order cadence and timing.

HelloFresh’s team uses this data to identify relationships between trends in customer attributes and behavior. As a hypothetical example, imagine the HelloFresh team identifies a spike in fish-based recipe orders. After conducting diagnostic analysis, they find that the attributes most highly correlated with ordering fish recipes are identifying as female and living in the northeastern United States.

(Video) Defining Marketing Analytics Four Types of Analytics

From there, the team could conduct market research with that specific demographic to learn more about the demand for fish recipes. Was it caused by a recent scientific study touting the health benefits of fish for women? Perhaps people who live in the northeastern United States have a refined palate for seafood because they live relatively close to the Atlantic Ocean. Their reasoning could provide impactful insights to HelloFresh.

Dipping into the other types of analytics, the team could also consider whether the trend is expected to continue (predictive analytics) and if it’s worth the effort and money to create more fish-based recipes to cater to this audience’s preference (prescriptive analytics).

2. Explaining Customer Behavior

For companies that collect customer data, diagnostic analytics is the key to understanding why customers do what they do. These insights can be used to improve products and user experience (UX), reposition brand messaging, and ensure product-audience fit.

Continuing with the HelloFresh example, consider the value of customer retention to the company, which operates on a subscription model. Keeping customers is more cost-effective than obtaining new ones, so the HelloFresh uses diagnostic analytics to determine why departing customers choose to cancel subscriptions.

During the cancellation process, departing customers must provide their reason for canceling. Options range from “doesn’t fit my budget” to “doesn’t fit my schedule or dietary needs,” and there’s also an option to write in an answer. By gathering this data, HelloFresh can analyze the most cited reasons for losing customers among specific regions and demographics and use diagnostic analytics to answer the question, “Why are people cancelling their subscriptions?”

These insights can help improve HelloFresh’s product and user experience to avoid losing more customers to those reasons.

3. Identifying Technology Issues

One example of diagnostic analytics that requires using a software program or proprietary algorithm is running tests to determine the cause of a technology issue. This is often referred to as “running diagnostics” and may be something you’ve done before when experiencing computer difficulty.

(Video) Diagnostic Analytics Extras (P3-4 Extras) #literasidatasederhanaapaadanya

Some of these algorithms are constantly at work in the background of your machine, while others need to be initiated by a human. One type of diagnostic test you may be familiar with is solution-based diagnostics, which detects and flags symptoms of known issues and conducts a scan to determine the root cause. This can allow you to address the issue and escalate it if the cause is serious.

4. Improving Company Culture

Diagnostic analytics can also be leveraged to improve internal company culture. Human resource departments can gather information about employees’ sense of physical and psychological safety, issues they care about, and qualities and skills that make someone successful and happy. Many of these insights come from running internal, anonymous surveys and conducting exit interviews to identify factors that contributed to employees’ desire to stay or leave.

Gathering information about employees’ thoughts and feelings allows you to analyze the data and determine how areas like company culture and benefits could be improved. This can include anything from wishing the company made more corporate social responsibility (CSR) contributions to feeling discriminated against at work. In these cases, the data presents a case for allocating more resources to CSR and diversity, equity, inclusion, and belonging efforts.

Insights from surveys and interviews can also enable hiring managers to determine which qualities and skills make someone successful at your company or on your specific team, and thus help attract and hire better candidates for open roles.

Diagnostic analytics can help boost employee happiness, safety, and retention, as well as lead to more effective hiring processes.

What Is Diagnostic Analytics? 4 Examples | HBS Online (2)
(Video) 4 types of Data Analytics: Descriptive, Diagnostics, Predictive and Prescriptive Analytics

Answering Big Questions with Data

Diagnostic analytics can enable you to get to the “why” behind data trends. With a deeper understanding of your data—whether it be about customers, employees, or technology issues—you can feel empowered to make data-driven decisions.

To boost your analytics skills, consider taking an online course, such as Business Analytics. Ask questions of datasets, learn to run single linear and multiple regressions, and hear from real-world business professionals who’ve used data analysis to impact their organizations.

Do you want to become a data-driven professional? Explore our eight-week Business Analytics course and our three-course Credential of Readiness (CORe) program to deepen your analytical skills and apply them to real-world business problems.


What is an example of diagnostic analytics in healthcare? ›

Diagnostic analytics in healthcare can help organizations in many ways. Some examples include determining: The most common signs and symptoms of a specific illness. Why some patients don't follow through with home therapy and others do.

What are the 4 types of data analytics? ›

There are four types of analytics, Descriptive, Diagnostic, Predictive, and Prescriptive. The chart below outlines the levels of these four categories.

What are the examples of diagnostic research? ›

Diagnostic research definition
  • scientific research.
  • Diagnostic mammography.
  • Diagnostic Product.
  • Basic research.
  • Therapeutic school.
  • Vaccine.
  • in vitro diagnostic medical device.
  • Diagnostic x-ray system.

What are 4 types of diagnostic testing? ›

Diagnostic tests
  • Biopsy. A biopsy helps a doctor diagnose a medical condition. ...
  • Colonoscopy. ...
  • CT scan. ...
  • CT scans and radiation exposure in children and young people. ...
  • Electrocardiogram (ECG) ...
  • Electroencephalogram (EEG) ...
  • Gastroscopy. ...
  • Eye tests.

What are some examples of diagnostic tools? ›

9 Must-Have Diagnostic Tools
  • Stethoscope. No clinician can be without their trusty stethoscope. ...
  • Pulse Oximeter. ...
  • Thermometer. ...
  • Reflex Hammer. ...
  • Blood Pressure Cuff. ...
  • Penlight. ...
  • Ophthalmoscope. ...
  • Otoscope.
Feb 12, 2021

What are three examples of diagnostic services? ›

Diagnostic Services
  • Nuclear Medicine & Radiation Safety Service. ...
  • Pathology and Laboratory Medicine. ...
  • Radiology. ...
  • Teleradiology.
Feb 29, 2016

What is diagnostic analytics used for? ›

Diagnostic analytics is a form of advanced analytics that examines data or content to answer the question, “Why did it happen?” It is characterized by techniques such as drill-down, data discovery, data mining and correlations.

What are examples of diagnostic tests and procedures? ›

There are many different types of diagnostic procedures. Examples include laboratory tests (such as blood and urine tests), imaging tests (such as mammography and CT scan), endoscopy (such as colonoscopy and bronchoscopy), and biopsy. Also called diagnostic test.

What are 4 examples of data types? ›

4 Types of Data: Nominal, Ordinal, Discrete, Continuous.

What are the 4 data types give examples of each type? ›

Data type
  • Boolean (e.g., True or False)
  • Character (e.g., a)
  • Date (e.g., 03/01/2016)
  • Double (e.g., 1.79769313486232E308)
  • Floating-point number (e.g., 1.234)
  • Integer (e.g., 1234)
  • Long (e.g., 123456789)
  • Short (e.g., 0)
Dec 31, 2022

What is the 4th stages in performing diagnostic process? ›

The committee identified four types of information-gathering activities in the diagnostic process: taking a clinical history and interview; performing a physical exam; obtaining diagnostic testing; and sending a patient for referrals or consultations.

What is an example of diagnosis? ›

She is an expert in the diagnosis and treatment of eye diseases. The diagnosis was a mild concussion. His doctor made an initial diagnosis of pneumonia. The committee published its diagnosis of the problems affecting urban schools.

What are 5 diagnostic tools? ›

Five diagnostic tools you need to know about
  • Magnetic resonance imaging (MRI) What is it? An MRI is similar to an X-ray, but it is much more detailed. ...
  • Computer axial tomography (CT or CAT) scan. What is it? ...
  • Biopsy. What is it? ...
  • Positron emission tomography (PET) scan. What is it? ...
  • Ultrasound. What is it?
Apr 1, 2019

What are types of diagnostics? ›

Diagnostic Tests
  • A1C.
  • Amniocentesis see Prenatal Testing.
  • Biopsy.
  • Blood Pressure see Vital Signs.
  • Blood Tests see Laboratory Tests.
  • Breathing Rate see Vital Signs.
  • CAT Scans see CT Scans.
  • Chorionic Villi Sampling see Prenatal Testing.

What are the three most common types applications of diagnostic strategies? ›

types and applications of diagnostic strategies, including:
  • strategy-based diagnostics.
  • flow charts.
  • diagnosis charts.

What do you mean by diagnostic analytics? ›

Diagnostic analytics is a form of advanced analytics that examines data or content to answer the question, “Why did it happen?” It is characterized by techniques such as drill-down, data discovery, data mining and correlations.

Where is diagnostic analytics used? ›

Diagnostic analytics is usually performed using such techniques as data discovery, drill-down, data mining, and correlations. In the discovery process, analysts identify the data sources that will help them interpret the results. Drilling down involves focusing on a certain facet of the data or particular widget.

What is diagnostic analytics also known as? ›

This entails digging deeper into data to determine not only what happened, but also why it happened. Diagnostic analytics is also known as root cause analysis because of its emphasis on cause and effect. Diagnostic analytics, like descriptive analytics, relies on previous data.

What are examples of analytical data? ›

Analytical Data is used to make business decisions, as opposed to recording the data from actual operational business processes. Examples include grouping customers for market segmentation or changes in purchase volume over time.

What are the 4 steps of data analytics? ›

Many of you are probably familiar with the four stages of Analytics: Descriptive, Diagnostic, Predictive, and Prescriptive.

What are the 5 types of data analytics? ›

5 Types of analytics: Prescriptive, Predictive, Diagnostic, Descriptive and Cognitive Analytics - WeirdGeek | Data analysis tools, Data analytics, Data science.

What are the 4 types of data analytics descriptive diagnostic predictive Prescriptive? ›

Descriptive Analytics tells you what happened in the past. Diagnostic Analytics helps you understand why something happened in the past. Predictive Analytics predicts what is most likely to happen in the future. Prescriptive Analytics recommends actions you can take to affect those outcomes.

What is the diagnostic system used for? ›

The purpose of a system diagnostic is to identify weak points in a computer system, identify the cause of problems, or assist with setup. In addition to the built-in diagnostics available in most operating systems, you can also get software that offers further diagnostic capabilities.

What are the uses in diagnostic? ›

The primary purpose of diagnostic testing is to detect a disease, its outlook, and its spread throughout the body. Diagnostic tests are used widely over the world with the primary purpose of detection of disease, its outlook, and its spread in the body.

What are diagnostic tools used for? ›

Diagnostic equipment, methods, or systems are used for discovering what is wrong with people who are ill or with things that do not work properly.

What are the 3 main types of analytical reports? ›

4 Types of Report Analyses
  • Market Analysis. Owners should keep up-to-date with the current trends in the business environment so they can be aware of important external factors that affect their day-to-day operations. ...
  • Financial Analysis. ...
  • Operational Analysis. ...
  • Trend Analysis.
Jul 31, 2020

What are the two types of diagnostic? ›

Clinical diagnosis. A diagnosis made on the basis of medical signs and reported symptoms, rather than diagnostic tests. Laboratory diagnosis. A diagnosis based significantly on laboratory reports or test results, rather than the physical examination of the patient.


1. Making sense of analytics for documentation pages | Kumar Dhanagopal | API The Docs Virtual 2023
(API the Docs)
2. Diagnostic Analysis
(Dr. Mardhani Riasetiawan)
3. A Beginners Guide To The Data Analysis Process
4. Diagnostic Analysis & Action Plan
(Carver & Associates)
5. Top 5 Customer Analytics - Demonstrated
(Data Science Demonstrated)
6. 4 Types of Data Analytics
Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated: 03/12/2023

Views: 5825

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.